588 research outputs found

    Competent Men and Warm Women: Gender Stereotypes and Backlash in Image Search Results

    Get PDF
    There is much concern about algorithms that underlie information services and the view of the world they present. We develop a novel method for examining the content and strength of gender stereotypes in image search, inspired by the trait adjective checklist method. We compare the gender distribution in photos retrieved by Bing for the query “person” and for queries based on 68 character traits (e.g., “intelligent person”) in four regional markets. Photos of men are more often retrieved for “person,” as compared to women. As predicted, photos of women are more often retrieved for warm traits (e.g., “emotional”) whereas agentic traits (e.g., “rational”) are represented by photos of men. A backlash effect, where stereotype-incongruent individuals are penalized, is observed. However, backlash is more prevalent for “competent women” than “warm men.” Results underline the need to understand how and why biases enter search algorithms and at which stages of the engineering proces

    Automatic near real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for assimilation into hydraulic models: a case study

    Get PDF
    Flood extents caused by fluvial floods in urban and rural areas may be predicted by hydraulic models. Assimilation may be used to correct the model state and improve the estimates of the model parameters or external forcing. One common observation assimilated is the water level at various points along the modelled reach. Distributed water levels may be estimated indirectly along the flood extents in Synthetic Aperture Radar (SAR) images by intersecting the extents with the floodplain topography. It is necessary to select a subset of levels for assimilation because adjacent levels along the flood extent will be strongly correlated. A method for selecting such a subset automatically and in near real-time is described, which would allow the SAR water levels to be used in a forecasting model. The method first selects candidate waterline points in flooded rural areas having low slope. The waterline levels and positions are corrected for the effects of double reflections between the water surface and emergent vegetation at the flood edge. Waterline points are also selected in flooded urban areas away from radar shadow and layover caused by buildings, with levels similar to those in adjacent rural areas. The resulting points are thinned to reduce spatial autocorrelation using a top-down clustering approach. The method was developed using a TerraSAR-X image from a particular case study involving urban and rural flooding. The waterline points extracted proved to be spatially uncorrelated, with levels reasonably similar to those determined manually from aerial photographs, and in good agreement with those of nearby gauges

    The effects of spatial resolution and dimensionality on modeling regional-scale hydraulics in a multichannel river

    Get PDF
    As modeling capabilities at regional and global scales improve, questions remain regarding the appropriate process representation required to accurately simulate multichannel river hydraulics. This study uses the hydrodynamic model LISFLOOD-FP to simulate patterns of water surface elevation (WSE), depth, and inundation extent across a ∌90 km, anabranching reach of the Tanana River, Alaska. To provide boundary conditions, we collected field observations of bathymetry and WSE during a 2 week field campaign in summer 2013. For the first time at this scale, we test a simple, raster-based model's capabilities to simulate 2-D, in-channel patterns of WSE and inundation extent. Additionally, we compare finer resolution (≀25 m) 2-D models to four other models of lower dimensionality and coarser resolution (100–500 m) to determine the effects of simplifying process representation. Results indicate that simple, raster-based models can accurately simulate 2-D, in-channel hydraulics in the Tanana. Also, the fine-resolution, 2-D models produce lower errors in spatiotemporal outputs of WSE and inundation extent compared to coarse-resolution, 1-D models: 22.6 cm versus 56.4 cm RMSE for WSE, and 90% versus 41% Critical Success Index values for simulating inundation extent. Incorporating the anabranching channel network using subgrid representations for smaller channels is important for simulating accurate hydraulics and lowers RMSE in spatially distributed WSE by at least 16%. As a result, better representation of the converging and diverging multichannel network by using subgrid solvers or downscaling techniques in multichannel rivers is needed to improve errors in regional to global-scale models

    Comparative flood damage model assessment: towards a European approach

    Get PDF
    There is a wide variety of flood damage models in use internationally, differing substantially in their approaches and economic estimates. Since these models are being used more and more as a basis for investment and planning decisions on an increasingly large scale, there is a need to reduce the uncertainties involved and develop a harmonised European approach, in particular with respect to the EU Flood Risks Directive. In this paper we present a qualitative and quantitative assessment of seven flood damage models, using two case studies of past flood events in Germany and the United Kingdom. The qualitative analysis shows that modelling approaches vary strongly, and that current methodologies for estimating infrastructural damage are not as well developed as methodologies for the estimation of damage to buildings. The quantitative results show that the model outcomes are very sensitive to uncertainty in both vulnerability (i.e. depth–damage functions) and exposure (i.e. asset values), whereby the first has a larger effect than the latter. We conclude that care needs to be taken when using aggregated land use data for flood risk assessment, and that it is essential to adjust asset values to the regional economic situation and property characteristics. We call for the development of a flexible but consistent European framework that applies best practice from existing models while providing room for including necessary regional adjustments

    ALTERED PHOSPHORYLATION STATUS, PHOSPHOLIPID-METABOLISM AND GLUCONEOGENESIS IN THE HOST LIVER OF RATS WITH PROSTATE-CANCER - A P-31 MAGNETIC-RESONANCE SPECTROSCOPY STUDY

    Get PDF
    31P magnetic resonance spectroscopy (MRS) in vivo and in vitro was used to study modulation of host liver (HL) metabolism in rats bearing the MAT-LyLu variant of the Dunning prostate tumour. Animals were inoculated either with 10(6) or 10(7) MAT-LyLu cells, or with saline to serve as controls. Carcass weight in tumour-bearing (TB) animals decreased despite similar food and water intake in both groups. Absence of metastatic tumour cells from HL of all TB animals was confirmed by histological examination. Twenty-one days after inoculation, 31P MRS showed a 2.5-fold increase in [Pi]/[ATP] ratios in HL in vivo (P < 0.001) which was confirmed by 31P MRS of liver extracts in vitro (P < 0.005). Phosphodiester to ATP ratios were significantly increased (P < 0.05) in HL in vivo, but absolute PDE levels were similar in both groups. Phosphomonoester to ATP ratios did not change, although absolute phosphomonoester levels in HL were reduced by -41% (not significant). In HL extracts in vitro, sharp reductions in the levels of glucose-6-phosphate (P < 0.05), fructose-6-phosphate (P = 0.05), phosphocholine (P < 0.001), glycerophosphocholine (P < 0.001), and glycerophosphoethanolamine (P < 0.001) were observed. Electron microscopy revealed increased amounts and altered distribution of rough endoplasmic reticulum in HL. These findings show that experimental prostate cancer significantly affects hepatic phosphorylation status, phospholipid metabolism, and gluconeogenesis in the host animal, and demonstrate the value of combined MRS in vivo and in vitro in monitoring HL metabolism in cancer

    MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset

    Get PDF
    High-resolution raster hydrography maps are a fundamental data source for many geoscience applications. Here we introduce MERIT Hydro, a new global flow direction map at 3-arc sec resolution (~90 m at the equator) derived from the latest elevation data (MERIT DEM) and water body data sets (G1WBM, Global Surface Water Occurrence, and OpenStreetMap). We developed a new algorithm to extract river networks near automatically by separating actual inland basins from dummy depressions caused by the errors in input elevation data. After a minimum amount of hand editing, the constructed hydrography map shows good agreement with existing quality-controlled river network data sets in terms of flow accumulation area and river basin shape. The location of river streamlines was realistically aligned with existing satellite-based global river channel data. Relative error in the drainage area was <0.05 for 90% of Global Runoff Data Center (GRDC) gauges, confirming the accuracy of the delineated global river networks. Discrepancies in flow accumulation area were found mostly in arid river basins containing depressions that are occasionally connected at high water levels and thus resulting in uncertain watershed boundaries. MERIT Hydro improves on existing global hydrography data sets in terms of spatial coverage (between N90 and S60) and representation of small streams, mainly due to increased availability of high-quality baseline geospatial data sets. The new flow direction and flow accumulation maps, along with accompanying supplementary layers on hydrologically adjusted elevation and channel width, will advance geoscience studies related to river hydrology at both global and local scales

    Integrating FATE/critical data studies into data science curricula : where are we going and how do we get there?

    Get PDF
    There have been multiple calls for integrating topics related to fairness, accountability, transparency, ethics (FATE) and social justice into Data Science curricula, but little exploration of how this might work in practice. This paper presents the findings of a collaborative auto-ethnography (CAE) engaged in by a MSc Data Science teaching team based at University of Sheffield (UK) Information School where FATE/Critical Data Studies (CDS) topics have been a core part of the curriculum since 2015/16. In this paper, we adopt the CAE approach to reflect on our experiences of working at the intersection of disciplines, and our progress and future plans for integrating FATE/CDS into the curriculum. We identify a series of challenges for deeper FATE/CDS integration related to our own competencies and the wider socio-material context of Higher Education in the UK. We conclude with recommendations for ourselves and the wider FATE/CDS orientated Data Science community

    AirSWOT measurements of river water surface elevation and slope: Tanana River, AK

    Get PDF
    Fluctuations in water surface elevation (WSE) along rivers have important implications for water resources, flood hazards, and biogeochemical cycling. However, current in situ and remote sensing methods exhibit key limitations in characterizing spatiotemporal hydraulics of many of the world's river systems. Here we analyze new measurements of river WSE and slope from AirSWOT, an airborne analogue to the Surface Water and Ocean Topography (SWOT) mission aimed at addressing limitations in current remotely sensed observations of surface water. To evaluate its capabilities, we compare AirSWOT WSEs and slopes to in situ measurements along the Tanana River, Alaska. Root-mean-square error is 9.0 cm for WSEs averaged over 1 km2 areas and 1.0 cm/km for slopes along 10 km reaches. Results indicate that AirSWOT can accurately reproduce the spatial variations in slope critical for characterizing reach-scale hydraulics. AirSWOT's high-precision measurements are valuable for hydrologic analysis, flood modeling studies, and for validating future SWOT measurements

    Susceptibility amplitude ratio for generic competing systems

    Full text link
    We calculate the susceptibility amplitude ratio near a generic higher character Lifshitz point up to one-loop order. We employ a renormalization group treatment with LL independent scaling transformations associated to the various inequivalent subspaces in the anisotropic case in order to compute the ratio above and below the critical temperature and demonstrate its universality. Furthermore, the isotropic results with only one type of competition axes have also been shown to be universal. We describe how the simpler situations of mm-axial Lifshitz points as well as ordinary (noncompeting) systems can be retrieved from the present framework.Comment: 20 pages, no figure

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    • 

    corecore